Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMJ Glob Health ; 9(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580377

RESUMO

Three months after the first shipment of RTS,S1/AS01 vaccines, Cameroon started, on 22 January 2024, to roll out malaria vaccines in 42 districts among the most at risk for malaria. Cameroon adopted and implemented the World Health Organization (WHO) malaria vaccine readiness assessment tool to monitor the implementation of preintroduction activities at the district and national levels. One week before the start of the vaccine rollout, overall readiness was estimated at 89% at a national level with two out of the five components of readiness assessment surpassing 95% of performance (vaccine, cold chain and logistics and training) and three components between 80% and 95% (planning, monitoring and supervision, and advocacy, social mobilisation and communication). 'Vaccine, cold chain and logistics' was the component with the highest number of districts recording below 80% readiness. The South-West and North-West, two regions with a high level of insecurity, were the regions with the highest number of districts that recorded a readiness performance below 80% in the five components. To monitor progress in vaccine rollout daily, Cameroon piloted a system for capturing immunisation data by vaccination session coupled with an interactive dashboard using the R Shiny platform. In addition to displaying data on vaccine uptake, this dashboard allows the generation of the monthly immunisation report for all antigens, ensuring linkage to the regular immunisation data system based on the end-of-month reporting through District Health Information Software 2. Such a hybrid system complies with the malaria vaccine rollout principle of full integration into routine immunisation coupled with strengthened management of operations.


Assuntos
Vacinas Antimaláricas , Malária , Humanos , Camarões , Malária/prevenção & controle , Vacinação , Imunização
2.
Lancet Infect Dis ; 24(5): 465-475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342107

RESUMO

BACKGROUND: The R21/Matrix-M vaccine has demonstrated high efficacy against Plasmodium falciparum clinical malaria in children in sub-Saharan Africa. Using trial data, we aimed to estimate the public health impact and cost-effectiveness of vaccine introduction across sub-Saharan Africa. METHODS: We fitted a semi-mechanistic model of the relationship between anti-circumsporozoite protein antibody titres and vaccine efficacy to data from 3 years of follow-up in the phase 2b trial of R21/Matrix-M in Nanoro, Burkina Faso. We validated the model by comparing predicted vaccine efficacy to that observed over 12-18 months in the phase 3 trial. Integrating this framework within a mathematical transmission model, we estimated the cases, malaria deaths, and disability-adjusted life-years (DALYs) averted and cost-effectiveness over a 15-year time horizon across a range of transmission settings in sub-Saharan Africa. Cost-effectiveness was estimated incorporating the cost of vaccine introduction (dose, consumables, and delivery) relative to existing interventions at baseline. We report estimates at a median of 20% parasite prevalence in children aged 2-10 years (PfPR2-10) and ranges from 3% to 65% PfPR2-10. FINDINGS: Anti-circumsporozoite protein antibody titres were found to satisfy the criteria for a surrogate of protection for vaccine efficacy against clinical malaria. Age-based implementation of a four-dose regimen of R21/Matrix-M vaccine was estimated to avert 181 825 (range 38 815-333 491) clinical cases per 100 000 fully vaccinated children in perennial settings and 202 017 (29 868-405 702) clinical cases per 100 000 fully vaccinated children in seasonal settings. Similar estimates were obtained for seasonal or hybrid implementation. Under an assumed vaccine dose price of US$3, the incremental cost per clinical case averted was $7 (range 4-48) in perennial settings and $6 (3-63) in seasonal settings and the incremental cost per DALY averted was $34 (29-139) in perennial settings and $30 (22-172) in seasonal settings, with lower cost-effectiveness ratios in settings with higher PfPR2-10. INTERPRETATION: Introduction of the R21/Matrix-M malaria vaccine could have a substantial public health benefit across sub-Saharan Africa. FUNDING: The Wellcome Trust, the Bill & Melinda Gates Foundation, the UK Medical Research Council, the European and Developing Countries Clinical Trials Partnership 2 and 3, the NIHR Oxford Biomedical Research Centre, and the Serum Institute of India, Open Philanthropy.


Assuntos
Análise Custo-Benefício , Vacinas Antimaláricas , Malária Falciparum , Modelos Teóricos , Saúde Pública , Humanos , Vacinas Antimaláricas/economia , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Malária Falciparum/economia , Burkina Faso/epidemiologia , Pré-Escolar , Saúde Pública/economia , Plasmodium falciparum/imunologia , Criança , Proteínas de Protozoários/imunologia , Anticorpos Antiprotozoários/sangue , Eficácia de Vacinas , Lactente , Masculino , Feminino
3.
J Clin Invest ; 134(6)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194272

RESUMO

BACKGROUNDSanaria PfSPZ Vaccine, composed of attenuated Plasmodium falciparum (Pf) sporozoites (SPZ), protects against malaria. We conducted this clinical trial to assess the safety and efficacy of PfSPZ Vaccine in HIV-positive (HIV+) individuals, since the HIV-infection status of participants in mass vaccination programs may be unknown.METHODSThis randomized, double-blind, placebo-controlled trial enrolled 18- to 45-year-old HIV-negative (HIV-) and well-controlled HIV+ Tanzanians (HIV viral load <40 copies/mL, CD4 counts >500 cells/µL). Participants received 5 doses of PfSPZ Vaccine or normal saline (NS) over 28 days, followed by controlled human malaria infection (CHMI) 3 weeks later.RESULTSThere were no solicited adverse events in the 9 HIV- and 12 HIV+ participants. After CHMI, 6 of 6 NS controls, 1 of 5 HIV- vaccinees, and 4 of 4 HIV+ vaccinees were Pf positive by quantitative PCR (qPCR). After immunization, anti-Pf circumsporozoite protein (anti-PfCSP) (isotype and IgG subclass) and anti-PfSPZ antibodies, anti-PfSPZ CD4+ T cell responses, and Vδ2+ γδ CD3+ T cells were nonsignificantly higher in HIV- than in HIV+ vaccinees. Sera from HIV- vaccinees had significantly higher inhibition of PfSPZ invasion of hepatocytes in vitro and antibody-dependent complement deposition (ADCD) and Fcγ3B binding by anti-PfCSP and ADCD by anti-cell-traversal protein for ookinetes and SPZ (anti-PfCelTOS) antibodies.CONCLUSIONSPfSPZ Vaccine was safe and well tolerated in HIV+ vaccinees, but not protective. Vaccine efficacy was 80% in HIV- vaccinees (P = 0.012), whose sera had significantly higher inhibition of PfSPZ invasion of hepatocytes and enrichment of multifunctional PfCSP antibodies. A more potent PfSPZ vaccine or regimen is needed to protect those living with HIV against Pf infection in Africa.TRIAL REGISTRATIONClinicalTrials.gov NCT03420053.FUNDINGEquatorial Guinea Malaria Vaccine Initiative (EGMVI), made up of the Government of Equatorial Guinea Ministries of Mines and Hydrocarbons, and Health and Social Welfare, Marathon Equatorial Guinea Production Limited, Noble Energy, Atlantic Methanol Production Company, and EG LNG; Swiss government, through ESKAS scholarship grant no. 2016.0056; Intramural Research Program of the National Institute of Allergy and Infectious Diseases, NIH; NIH grant 1U01AI155354-01.


Assuntos
Infecções por HIV , Vacinas Antimaláricas , Malária Falciparum , Adolescente , Adulto , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Anticorpos Antiprotozoários , População da África Oriental , Infecções por HIV/complicações , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Tanzânia , Soronegatividade para HIV , Soropositividade para HIV , Eficácia de Vacinas
4.
Health Aff (Millwood) ; 42(8): 1091-1099, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37549331

RESUMO

Malaria is a leading global health problem that was responsible for an estimated 619,000 deaths worldwide in 2021. We modeled the return on investment (ROI) for the introduction and continuation of a four-dose malaria vaccine, RTS,S/AS01, from 2021 to 2030 in twenty sub-Saharan African countries supported by Gavi, the Vaccine Alliance. We used the Decade of Vaccine Economics benefits and costing outputs to calculate an ROI using health impact data modeled by the Swiss Tropical and Public Health Institute (hereafter "Swiss") and Imperial College London (hereafter "Imperial"). The Swiss estimates with a base vaccine price of US$7.00 resulted in an ROI of 0.42, and the Imperial impact estimates with the same base vaccine price resulted in an ROI of 2.30. Inclusion of the fifth seasonal dose for ten countries exhibiting high seasonal disease burden increased the Swiss ROI by 143 percent, to 1.02, and the Imperial ROI by 23.5 percent, to 2.84. To improve ROI, decision makers should continue to improve delivery platforms, decrease vaccine delivery costs, deliver the malaria vaccine in fewer doses, and provide access to vaccine resources.


Assuntos
Vacinas Antimaláricas , Malária , Humanos , Malária/prevenção & controle , Saúde Pública , Efeitos Psicossociais da Doença , África Subsaariana
5.
Malar J ; 22(1): 159, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208733

RESUMO

BACKGROUND: For blood-stage malaria vaccine development, the in vitro growth inhibition assay (GIA) has been widely used to evaluate functionality of vaccine-induced antibodies (Ab), and Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage antigen. However, precision, also called "error of assay (EoA)", in GIA readouts and the source of EoA has not been evaluated systematically. METHODS: In the Main GIA experiment, 4 different cultures of P. falciparum 3D7 parasites were prepared with red blood cells (RBC) collected from 4 different donors. For each culture, 7 different anti-RH5 Ab (either monoclonal or polyclonal Ab) were tested by GIA at two concentrations on three different days (168 data points). To evaluate sources of EoA in % inhibition in GIA (%GIA), a linear model fit was conducted including donor (source of RBC) and day of GIA as independent variables. In addition, 180 human anti-RH5 polyclonal Ab were tested in a Clinical GIA experiment, where each Ab was tested at multiple concentrations in at least 3 independent GIAs using different RBCs (5,093 data points). The standard deviation (sd) in %GIA and in GIA50 (Ab concentration that gave 50%GIA) readouts, and impact of repeat assays on 95% confidence interval (95%CI) of these readouts was estimated. RESULTS: The Main GIA experiment revealed that the RBC donor effect was much larger than the day effect, and an obvious donor effect was also observed in the Clinical GIA experiment. Both %GIA and log-transformed GIA50 data reasonably fit a constant sd model, and sd of %GIA and log-transformed GIA50 measurements were calculated as 7.54 and 0.206, respectively. Taking the average of three repeat assays (using three different RBCs) reduces the 95%CI width in %GIA or in GIA50 measurements by ~ half compared to a single assay. CONCLUSIONS: The RBC donor effect (donor-to-donor variance on the same day) in GIA was much bigger than the day effect (day-to-day variance using the same donor's RBC) at least for the RH5 Ab evaluated in this study; thus, future GIA studies should consider the donor effect. In addition, the 95%CI for %GIA and GIA50 shown here help when comparing GIA results from different samples/groups/studies; therefore, this study supports future malaria blood-stage vaccine development.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Plasmodium falciparum , Anticorpos Antiprotozoários , Malária Falciparum/parasitologia , Eritrócitos/parasitologia , Anticorpos Antivirais , Antígenos de Protozoários
6.
BMJ Glob Health ; 8(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068848

RESUMO

BACKGROUND: The WHO recommends use of the RTS,S/AS01E (RTS,S) malaria vaccine for young children living in areas of moderate to high Plasmodium falciparum malaria transmission and suggests countries consider seasonal vaccination in areas with highly seasonal malaria. Seasonal vaccination is uncommon and may require adaptations with potential cost consequences. This study prospectively estimates cost of seasonal malaria vaccine delivery in Mali and Burkina Faso. METHODS: Three scenarios for seasonal vaccine delivery are costed (1) mass campaign only, (2) routine Expanded Programme on Immunisation (EPI) and (3) mixed delivery (mass campaign and routine EPI)), from the government's perspective. Resource use data are informed by previous new vaccine introductions, supplemented with primary data from a sample of health facilities and administrative units. FINDINGS: At an assumed vaccine price of US $5 per dose, the economic cost per dose administered ranges between $7.73 and $8.68 (mass campaign), $7.04 and $7.38 (routine EPI) and $7.26 and $7.93 (mixed delivery). Excluding commodities, the cost ranges between $1.17 and $2.12 (mass campaign), $0.48 and $0.82 (routine EPI) and $0.70 and $1.37 (mixed delivery). The financial non-commodity cost per dose administered ranges between $0.99 and $1.99 (mass campaign), $0.39 and $0.76 (routine EPI) and $0.58 and $1.28 (mixed delivery). Excluding commodity costs, service delivery is the main cost driver under the mass campaign scenario, accounting for 36% to 55% of the financial cost. Service delivery accounts for 2%-8% and 12%-23% of the total financial cost under routine EPI and mixed delivery scenarios, respectively. CONCLUSION: Vaccine delivery using the mass campaign approach is most costly followed by mixed delivery and routine EPI delivery approaches, in both countries. Our cost estimates provide useful insights for decisions regarding delivery approaches, as countries plan the malaria vaccine rollout.


Assuntos
Vacinas Antimaláricas , Malária , Criança , Humanos , Pré-Escolar , Burkina Faso , Mali , Estações do Ano , Malária/prevenção & controle
7.
Vaccine ; 41(20): 3215-3223, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37080831

RESUMO

BACKGROUND: The World Health Organization has recommended a 4-dose schedule of the RTS,S/AS01 (RTS,S) vaccine for children in regions of moderate to high P. falciparum transmission. Faced with limited supply and finite resources, global funders and domestic malaria control programs will need to examine the relative cost-effectiveness of RTS,S and identify target areas for vaccine implementation relative to scale-up of existing interventions. METHODS: Using an individual-based mathematical model of P. falciparum, we modelled the cost-effectiveness of RTS,S across a range of settings in sub-Saharan Africa, incorporating various rainfall patterns, insecticide-treated net (ITN) use, treatment coverage, and parasite prevalence bands. We compare age-based and seasonal RTS,S administration to increasing ITN usage, switching to next generation ITNs in settings experiencing insecticide-resistance, and introduction of seasonal malaria chemoprevention (SMC) in areas of seasonal transmission. RESULTS: For RTS,S to be the most cost-effective intervention option considered, the maximum cost per dose was less than $9.30 USD in 90.9% of scenarios. Nearly all (89.8%) values at or above $9.30 USD per dose were in settings with 60% established bed net use and / or with established SMC, and 76.3% were in the highest PfPR2-10 band modelled (40%). Addition of RTS,S to strategies involving 60% ITN use, increased ITN usage or a switch to PBO nets, and SMC, if eligible, still led to significant marginal case reductions, with a median of 2,653 (IQR: 1,741 to 3,966) cases averted per 100,000 people annually, and 82,270 (IQR: 54,034 to 123,105) cases averted per 100,000 fully vaccinated children (receiving at least three doses). CONCLUSIONS: Use of RTS,S results in reductions in malaria cases and deaths even when layered upon existing interventions. When comparing relative cost-effectiveness, scale up of ITNs, introduction of SMC, and switching to new technology nets should be prioritized in eligible settings.


Assuntos
Inseticidas , Vacinas Antimaláricas , Malária Falciparum , Malária , Criança , Humanos , Lactente , Análise Custo-Benefício , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Quimioprevenção
8.
Vaccine ; 41(8): 1496-1502, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36710234

RESUMO

BACKGROUND: The World Health Organization (WHO) recommended widespread use of the RTS,S/AS01 (RTS,S) malaria vaccine among children residing in regions of moderate to high malaria transmission. This recommendation is informed by RTS,S evidence, including findings from the pilot rollout of the vaccine in Ghana, Kenya, and Malawi. This study estimates the incremental costs of introducing and delivering the malaria vaccine within routine immunization programs in the context of malaria vaccine pilot introduction, to help inform decision-making. METHODS: An activity-based, retrospective costing was conducted from the governments' perspective. Vaccine introduction and delivery costs supported by the donors during the pilot introduction were attributed as costs to the governments under routine implementation. Detailed resource use data were extracted from the pilot program expenditure and activity reports for 2019-2021. Primary data from representative health facilities were collected to inform recurrent operational and service delivery costs.Costs were categorized as introduction or recurrent costs. Both financial and economic costs were estimated and reported in 2020 USD. The cost of donated vaccine doses was evaluated at $2, $5 and $10 per dose and included in the economic cost estimates. Financial costs include the procurement add on costs for the donated vaccines and immunization supplies, along with other direct expenses. FINDINGS: At a vaccine price of $5 per dose, the incremental cost per dose administered across countries ranges from $2.30 to $3.01 (financial), and $8.28 to $10.29 (economic). The non-vaccine cost of delivery ranges between $1.04 and $2.46 (financial) and $1.52 and $4.62 (economic), by country. Considering only recurrent costs, the non-vaccine cost of delivery per dose ranges between $0.29 and $0.89 (financial) and $0.59 and $2.29 (economic), by country. Introduction costs constitute between 33% and 71% of total financial costs. Commodity and procurement add-on costs are the main cost drivers of total cost across countries. Incremental resource needs for implementation are dependent on country's baseline immunization program capacity constraints. INTERPRETATION: The financial costs of introducing RTS,S are comparable with costs of introducing other new vaccines. Country resource requirements for malaria vaccine introduction are most influenced by vaccine price and potential donor funding for vaccine purchases and introduction support.


Assuntos
Vacinas Antimaláricas , Malária , Criança , Humanos , Estudos Retrospectivos , Malária/prevenção & controle , Vacinação , Programas de Imunização
9.
Vaccine ; 40(40): 5781-5790, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36055874

RESUMO

The global burden of malaria remains substantial. Circumsporozoite protein (CSP) has been demonstrated to be an effective target antigen, however, improvements that offer more efficacious and more durable protection are still needed. In support of research and development of next-generation malaria vaccines, Walter Reed Army Institute of Research (WRAIR) has developed a CSP-based antigen (FMP013) and a novel adjuvant ALFQ (Army Liposome Formulation containing QS-21). We present a single center, open-label, dose-escalation Phase 1 clinical trial to evaluate the safety and immunogenicity of the FMP013/ALFQ malaria vaccine candidate. In this first-in-human evaluation of both the antigen and adjuvant, we enrolled ten subjects; five received 20 µg FMP013 / 0.5 mL ALFQ (Low dose group), and five received 40 µg FMP013 / 1.0 mL ALFQ (High dose group) on study days 1, 29, and 57. Adverse events and immune responses were assessed during the study period. The clinical safety profile was acceptable and there were no serious adverse events. Both groups exhibited robust humoral and cellular immunological responses, and compared favorably with historical responses reported for RTS,S/AS01. Based on a lower reactogenicity profile, the 20 µg FMP013 / 0.5 mL ALFQ (Low dose) was selected for follow-on efficacy testing by controlled human malaria infection (CHMI) with a separate cohort. Trial Registration:Clinicaltrials.gov Identifier NCT04268420 (Registered February 13, 2020).


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Adjuvantes Imunológicos/efeitos adversos , Adulto , Anticorpos Antiprotozoários , Humanos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Proteínas de Protozoários
11.
Front Immunol ; 13: 977472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159849

RESUMO

In 1967, pioneering work by Ruth Nussenzweig demonstrated for the first time that irradiated sporozoites of the rodent malaria parasite Plasmodium berghei protected mice against a challenge with infectious parasites of the same species. This remarkable finding opened up entirely new prospects of effective vaccination against malaria using attenuated sporozoites as immunization agents. The potential for whole-sporozoite-based immunization in humans was established in a clinical study in 1973, when a volunteer exposed to X-irradiated P. falciparum sporozoites was found to be protected against malaria following challenge with a homologous strain of this parasite. Nearly five decades later, much has been achieved in the field of whole-sporozoite malaria vaccination, and multiple reports on the clinical evaluation of such candidates have emerged. However, this process has known different paces before and after the turn of the century. While only a few clinical studies were published in the 1970's, 1980's and 1990's, remarkable progress was made in the 2000's and beyond. This article reviews the history of the clinical assessment of whole-sporozoite malaria vaccines over the last forty-nine years, highlighting the impressive achievements made over the last few years, and discussing some of the challenges ahead.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Animais , Humanos , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Camundongos , Plasmodium falciparum , Esporozoítos
15.
Malar J ; 20(1): 439, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34794430

RESUMO

Mathematical models are increasingly used to inform decisions throughout product development pathways from pre-clinical studies to country implementation of novel health interventions. This review illustrates the utility of simulation approaches by reviewing the literature on malaria vaccine modelling, with a focus on its link to the development of policy guidance for the first licensed product, RTS,S/AS01. The main contributions of modelling studies have been in inferring the mechanism of action and efficacy profile of RTS,S; to predicting the public health impact; and economic modelling mainly comprising cost-effectiveness analysis. The value of both product-specific and generic modelling of vaccines is highlighted.


Assuntos
Vacinas Antimaláricas , Animais , Análise Custo-Benefício , Humanos , Vacinas Antimaláricas/economia , Vacinas Antimaláricas/normas , Modelos Biológicos
16.
Malar J ; 20(1): 436, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758827

RESUMO

BACKGROUND: The currently used malaria vaccine, RTS,S, is designed based on the Plasmodium falciparum circumsporozoite protein (PfCSP). The pfcsp gene, besides having different polymorphic patterns, can vary between P. falciparum isolates due to geographical origin and host immune response. Such aspects are essential when considering the deployment of the RTS,S vaccine in a certain region. Therefore, this study assessed the genetic diversity of P. falciparum in Sudan based on the pfcsp gene by investigating the diversity at the N-terminal, central repeat, and the C-terminal regions. METHODS: A cross-sectional molecular study was conducted; P. falciparum isolates were collected from different health centres in Khartoum State between January and December 2019. During the study period, a total of 261 febrile patients were recruited. Malaria diagnosis was made by expert microscopists using Giemsa-stained thick and thin blood films. DNA samples were examined by the semi-nested polymerase chain reaction (PCR). Single clonal infection of the confirmed P. falciparum cases, were used to amplify the pfcsp gene. The amplified amplicons of pfcsp have been sequenced using the Sanger dideoxy method. The obtained sequences of pfcsp nucleotide diversity parameters including the numbers of haplotypes (Hap), haplotypes diversity (Hapd), the average number of nucleotide differences between two sequences (p), and the numbers of segregating sites (S) were obtained. The haplotype networks were constructed using the online tcsBU software. Natural selection theory was also tested on pfcsp using Fuand Li's D, Fuand Li's F statistics, and Tajima's D test using DnaSP. RESULTS: In comparison with the different pfcsp reference strains, the Sudanese isolates showed high similarity with other African isolates. The results of the N-terminal region showed the presence of 2 different haplotypes with a Hapd of 0.425 ± 0.00727. The presence of the unique insertion of NNNGDNGREGKDEDKRDGNN was reported. The KLKQP motif was conserved in all the studied isolates. At the central repeat region, 11 haplotypes were seen with a Hapd of 0.779 ± 0.00097. The analysis of the genetic diversity in the C-terminal region showed the presence of 10 haplotypes with a Hapd of 0.457 ± 0.073. Several non-synonymous amino acids changes were also seen at the Th2R and the Th3R T-cell epitope regions including T317K, E317K, Q318E, K321N, I322K, T322K, R322K, K324Q, I327L, G352N, S354P, R355K, N356D, Q357E, and E361A. CONCLUSIONS: In this study, the results indicated a high conservation at the pfcsp gene. This may further contribute in understanding the genetic polymorphisms of P. falciparum prior to the deployment of the RTS,S vaccine in Sudan.


Assuntos
Variação Genética , Vacinas Antimaláricas/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Estudos Transversais , Feminino , Amplificação de Genes , Haplótipos , Humanos , Masculino , Plasmodium falciparum/química , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Sudão
19.
Front Immunol ; 12: 690348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305923

RESUMO

The hurdles to effective blood stage malaria vaccine design include immune evasion tactics used by the parasite such as redundant invasion pathways and antigen variation among circulating parasite strains. While blood stage malaria vaccine development primarily focuses on eliciting optimal humoral responses capable of blocking erythrocyte invasion, clinically-tested Plasmodium falciparum (Pf) vaccines have not elicited sterile protection, in part due to the dramatically high levels of antibody needed. Recent development efforts with non-redundant, conserved blood stage antigens suggest both high antibody titer and rapid antibody binding kinetics are important efficacy factors. Based on the central role of helper CD4 T cells in development of strong, protective immune responses, we systematically analyzed the class II epitope content in five leading Pf blood stage antigens (RH5, CyRPA, RIPR, AMA1 and EBA175) using in silico, in vitro, and ex vivo methodologies. We employed in silico T cell epitope analysis to enable identification of 67 HLA-restricted class II epitope clusters predicted to bind a panel of nine HLA-DRB1 alleles. We assessed a subset of these for HLA-DRB1 allele binding in vitro, to verify the in silico predictions. All clusters assessed (40 clusters represented by 46 peptides) bound at least two HLA-DR alleles in vitro. The overall epitope prediction to in vitro HLA-DRB1 allele binding accuracy was 71%. Utilizing the set of RH5 class II epitope clusters (10 clusters represented by 12 peptides), we assessed stimulation of T cells collected from HLA-matched RH5 vaccinees using an IFN-γ T cell recall assay. All clusters demonstrated positive recall responses, with the highest responses - by percentage of responders and response magnitude - associated with clusters located in the N-terminal region of RH5. Finally, a statistically significant correlation between in silico epitope predictions and ex vivo IFN-γ recall response was found when accounting for HLA-DR matches between the epitope predictions and donor HLA phenotypes. This is the first comprehensive analysis of class II epitope content in RH5, CyRPA, RIPR, AMA1 and EBA175 accompanied by in vitro HLA binding validation for all five proteins and ex vivo T cell response confirmation for RH5.


Assuntos
Antígenos de Protozoários/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Epitopos de Linfócito T/imunologia , Vacinas Antimaláricas/farmacologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Antígenos de Protozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/parasitologia , Proteínas de Transporte/imunologia , Proteínas de Transporte/farmacologia , Antígenos HLA-DR/imunologia , Interações Hospedeiro-Parasita , Humanos , Interferon gama/metabolismo , Vacinas Antimaláricas/imunologia , Malária Falciparum/sangue , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/farmacologia
20.
Front Immunol ; 12: 684116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025684

RESUMO

Immunization with radiation-attenuated sporozoites (RAS) has been shown to protect against malaria infection, primarily through CD8 T cell responses, but protection is limited based on parasite strain. Therefore, while CD8 T cells are an ideal effector population target for liver stage malaria vaccine development strategies, such strategies must incorporate conserved epitopes that cover a large range of class I human leukocyte antigen (HLA) supertypes to elicit cross-strain immunity across the target population. This approach requires identifying and characterizing a wide range of CD8 T cell epitopes for incorporation into a vaccine such that coverage across a large range of class I HLA alleles is attained. Accordingly, we devised an experimental framework to identify CD8 T cell epitopes from novel and minimally characterized antigens found at the pre-erythrocytic stage of parasite development. Through in silico analysis we selected conserved P. falciparum proteins, using P. vivax orthologues to establish stringent conservation parameters, predicted to have a high number of T cell epitopes across a set of six class I HLA alleles representative of major supertypes. Using the decision framework, five proteins were selected based on the density and number of predicted epitopes. Selected epitopes were synthesized as peptides and evaluated for binding to the class I HLA alleles in vitro to verify in silico binding predictions, and subsequently for stimulation of human T cells using the Modular IMmune In-vitro Construct (MIMIC®) technology to verify immunogenicity. By combining the in silico tools with the ex vivo high throughput MIMIC platform, we identified 15 novel CD8 T cell epitopes capable of stimulating an immune response in alleles across the class I HLA panel. We recommend these epitopes should be evaluated in appropriate in vivo humanized immune system models to determine their protective efficacy for potential inclusion in future vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Fígado/parasitologia , Plasmodium falciparum/imunologia , Alelos , Animais , Simulação por Computador , Experimentação Humana , Humanos , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA